1. COUNTING PROBLEMS

To read:
[1]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations, 1.7. Number of The
Number of Ordered Subsets, 1.8. The Number of Subsets of a Given Size, 3.1. The Binomial
Theorem, 3.2. Distributing Presents, 3.5. Pascal’s Triangle, 3.6. Identities in Pascal’s Triangle.
[3], Chapters 3.1-3.3.

1.1. Basic results on counting sets.

Notation. Let A be a finite set. We denote by |A| the cardinality of A, i. e. the number of
elements in the set.

Definition 1.1. Denote by [n] the set of first n natural numbers: [n] := {1,2,...n}.
Theorem 1.2. If there exists a bijection between finite sets A and B then |A| = |B].
Theorem 1.3. (Addition rule) Let A and B be finite sets. If ANB = () then |AUB| = |A|+|B].
Theorem 1.4. (Product rule) Let A and B be finite sets. Then
|A x B| = |A|-|B].
Recall the following formulas:

Proposition 1.5. The number of functions from [m] to [n] is n™. This is the number of m-letter
words in an n-letter alphabet.

Proposition 1.6. The number of permutations of a set of n elements is n!

Proof. This is likely to be familiar to you, but at any rate it follows from the multiplication rule.
Call the elements 1,...,n. A permutation can send 1 to any of n elements. Then 2 to any of
the n — 1 elements remaining, since 1 and 2 cannot be sent to the same. Each step leaves one
less option at the next step, for a total of

nxn-—1)x...x2x1

permutations. This is n! by definition (or really, if we refuse to skip steps, by induction). O

Proposition 1.7. The number of ways in which one can choose k objects out of n distinct
objects, assuming the order of the elements matters, is (nﬁ—'k:)'

Proof. It will dramatically speed up computations to note that
n!

(n—k)!

This should be calculated as a product of £ numbers, not a ratio of two factorials. In fact, this

form also shows how to deduce the formula from the multiplication rule. One has n choices for

the first object, then n — 1 for the second, culminating in n — k£ + 1 for the last of the k£ objects.

Notice that when £ = n, Propositions 1.6 and 1.7 agree. This would be clear even without

the explicit formulae: an ordered choice of all n out of the n objects is simply a way to permute
them.

Set-theoretically, n(n —1)---(n — k + 1) is also the number of injective functions from [k] to
[n]. O

Proposition 1.8. The number of ways in which one can choose k objects out of n distinct
objects, assuming the order of the elements does not matter, is (n_”—k:),k, =: (Z) This is the same

=nn—-1)...(n—k+1)

as the number of subsets of k elements of an n-element set.



Definition 1.9. The numbers (Z) = (n_”—k:),k, are called binomzial coefficients.

Proof. We already know the number of ordered subsets, by Proposition 1.7. On the other hand,
an ordered subset can be obtained in two steps: choose a subset, and then order it. Once the
choice of k elements is made, Proposition 1.6 tells us there are k! ways to do the ordering. By

the multiplication rule,
n! n
= k!
o ()

and we complete the proof by solving for (Z)

[

As with unordered choices, there is no need to compute all the factorials. Instead, note that

(n)_ n! nn—-1)...(n—k+1)
k) T =R Rl

If k is small, then we can afford to compute k! in the denominator. If k is large, then it is better
to exploit a basic symmetry of the binomial coefficients.

We will be convenient for us to use the following notation:

Proposition 1.10.

Notation. Let A be a finite set and k be a nonnegative integer. Then (’2) is the set of k-element
subsets of A. We have ‘(”2)‘ = (l’;").

1.2. Binomial coefficients. The following is called Pascal’s triangle

Row

0 (o) =1

L =1 (=1

? =1 (=2 (=1

3 =1 (=3 (=3 (=1

4 =1 (=4 (=6 (=1 (=1

5 1@=1 (=5 (=10 (=10 (H=5 (=1

Proposition 1.11. The following identities hold:

(W) (o) + () = G-
(2) (%) is the k-th element in the n-th line of Pascal’s triangle.

Proof. Recall that (71]) is the number of subsets of cardinality & -+ 1 in the set [n + 1]. Each

k+1
subset of [n + 1] either contains the element n + 1 or not. The number of elements in ([ZE])

containing n+1 is (Z) and the number of elements in ([Zﬂ]) not containing n+ 1 is (kﬁl) Now

we apply the Addition rule and finish the proof. ]
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Proposition 1.12. The number of subsets of an n-element set is 2", since we have

m = (g) (1) e+ ()

The number of subsets of an n-element set having odd cardinality is 2~ 1. The number of subsets
of an n-element set having even cardinality is 2" ".

The equalities above can be obtained using the binomial theorem.

(1+2)" = (8) + (T)aﬂ-—l— (Z)x” - Zzn; (:L)xl

Proof. To prove the binomial theorem, consider how to distribute the multiplication in
I+2)"=1+x)(1+x)...(1+2x)

From each factor 1 + x, we can choose either the 1 or the x to form a product with the other
terms. This product is 2* provided we choose z in k out of the n factors. There are (Z) such

choices, and collecting terms gives the sum ), (Z) 2 as claimed. ]

Theorem 1.13.

Proof of Proposition 1.12. For x = 1, respectively x = —1, we obtain

2 =(5) + (5) +o () j;(?;)
o=(3) - (1) +-or (1) = Zz";uy(’;).

Adding, respectively subtracting the two relations, and dividing each by two, one obtains

() () -
(1) () -

which proves the statements about the number of even/odd sets.
[

Proposition 1.14. Assume we have k identical objects and n different persons. Then, the
number of ways in which one can distribute this k objects among the n persons equals

(=)

Equivalently, it is a number of solutions of the equation x1+...+x, = k in nonnegative integers
or the number of k-multisets containing elements from [n]. If k > n and each persons receives

at least 1 object, then the number of possible ways to distribute is (f;j)

Proof. Let A be the set of all solutions of the equation
(1) SEl—I—...—l—CL‘n:k,SCiGZzo.
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Let B be the set of all subsets of cardinality n — 1 in [k + n — 1]. We construct a bijection
Y : A — B in the following way: a solution (x1,...,x,) is mapped to the subset

B={z1+1lL,x14+22+2,...,21+22+ ... +xpn_1+n—1}.
First, we check that B belongs to B. Indeed, the inequalities
1<zi+1l<ri4+x9+2<---<z1+x9+... 201 +tn—-1<k+n-1

imply that the elements of B are distinct and belong to [k +n — 1].
Next, to show that ¢ is a bijection we compute its inverse map. Let B be an element of B.
Suppose that
1<bi<by<---<bp_1<k+n-1
are the elements of B written in the increasing order. Then the preimage 1 ~1(B) is an n-tuple
of integers (x1,...,x,) defined by

Ir1 = bl —1
xi:bi—bi_l—l, i:2,...,n—1
Tn=k+n—1—>b,_1.
It is easy to see from these equations that the numbers x;,7 = 1,...n, are non-negative integers
and 1 + ...+ x, = k.
Since there is a bijection between sets A and B, their cardinalities are equal and

k+n—1
1«41:\61:( )

n—1
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